摘要

漏磁检测技术被广泛应用于铁磁材料的无损评估中,用漏磁信号描述缺陷的几何特征一直是漏磁检测的难点。提出应用最小二乘支持向量机对缺陷轮廓重构的方法,并利用粒子群算法来优化LS-SVM的参数及核函数参数。支持向量机输入是漏磁信号,输出是缺陷轮廓数据,建立了由缺陷的漏磁信号到缺陷二维轮廓的映射关系。训练样本由试验数据与仿真数据组成,测试样本为人工裂纹缺陷。该方法实现了人工裂纹缺陷的二维轮廓的重构,并与BP神经网络、GA-LS-SVM两种方法进行了比较。试验结果表明,该方法具有速度快、精度高和很好的泛化能力,为漏磁检测定量化提供了一种可行的方法。

  • 单位
    中国人民解放军陆军工程大学