摘要

针对传统词向量模型无法获取完整的语义表达,以及基础神经网络模型未能兼顾提取多种关联特征等问题,提出了一种融合预训练语言模型(ERNIE)和深层金字塔神经网络结构(DPCNN)/双向门控循环单元-注意力机制(BiGRU-Attention)的双通道文本情感分类模型。基于DPCNN的左通道负责提取文本长距离依赖表示,基于BiGRUAttention的右通道负责提取文本时间序列特征和关键信息。此外,均使用ERNIE模型提供动态字向量。最后,拼接融合双通道中的信息特征以获取最终的文本表示。实验结果表明,ERNIE-DBGA模型的准确率最高达到97.05%,优于其他对比方法,验证该模型可以有效提升情感分类的性能。