在故障诊断过程中,为了更好地提取特征以及提高故障识别率,提出了一种基于离散小波变换和深度可分离神经网络算法以及SVM分类器的滚动轴承故障诊断方法。首先,模型利用离散小波变换对原始振动信号提取特征,形成多通道样本;然后对样本进行深度可分离卷积神经网络训练,最后在全连接层后接SVM分类器实现对故障信号的分类。实验所用数据来自CTU-2实验平台,故障标签共有10类。实验结果表明,相比较单一使用小波变换提取特征或者CNN卷积神经网络分类的方法,该模型的诊断效果更加优秀。