摘要

当前智能找矿靶区预测方法大多依赖于人工采样和专家的知识经验,然而,对于现实世界中区域小、数量少的矿区区域,这些方法将面临巨大的挑战。为了迎接这个挑战,提出一种新颖的深度智能找矿靶区预测框架——多尺度特征交互框架。具体地,首先定义两个网络,即多尺度特征映射网络和多尺度特征分类网络;在此基础上,通过膨胀卷积捕获多尺度特征映射网络中不同地球化学元素的特征,并且利用多尺度分类网络处理这些特征;其次,使用元网络为多尺度分类网络生成卷积权重;最后使用自蒸馏挖掘多尺度分类网络中的隐知识用于预测。整个模型采用端到端的训练方式,大量的实验结果表明,多尺度特征交互框架与当前最先进的方法比较具有显著的竞争力。

全文