摘要
利用高分二号影像结合面向对象方法展开矿区占地信息提取研究,采用面积比均值法确定分割尺度进行多尺度分割获取对象,基于空间优化工具选取特征后标记样本,其中训练集、测试集和验证集比例为3∶1.将样本集在ResNet模型中训练,应用于全部对象,并与CNN模型进行对比.结果表明,面向对象方法结合ResNet模型进行矿区占地信息提取总体精度为91.41%,Kappa系数为0.89,优于CNN方法.该方法适用于以露天采场和矿堆为主的矿区环境,可以为后续的矿区环境治理工作提供有效的技术支持.
- 单位
利用高分二号影像结合面向对象方法展开矿区占地信息提取研究,采用面积比均值法确定分割尺度进行多尺度分割获取对象,基于空间优化工具选取特征后标记样本,其中训练集、测试集和验证集比例为3∶1.将样本集在ResNet模型中训练,应用于全部对象,并与CNN模型进行对比.结果表明,面向对象方法结合ResNet模型进行矿区占地信息提取总体精度为91.41%,Kappa系数为0.89,优于CNN方法.该方法适用于以露天采场和矿堆为主的矿区环境,可以为后续的矿区环境治理工作提供有效的技术支持.