SVR-KNN法用于除草剂QSAR研究

作者:区卫民; 谭泗桥; 袁哲明; 柏连阳; 熊洁仪
来源:安徽农业科学, 2008, (35): 15284-15286.
DOI:10.13989/j.cnki.0517-6611.2008.35.059

摘要

[目的]探索一种有效的组合预测方法,用于定量构效关系(QSAR)的研究分析。[方法]提出一种基于支持向量机回归(SVR)与K-最近邻法(KNN)的组合预测方法:以均方误差(MSE)最小为择优准则,对SVR实施核函数寻优;基于最优核函数以SVR进行描述符筛选并得到保留描述符;以"多轮末尾强制淘汰法"阐述各保留描述符对预测精度影响的程度;基于保留描述符,以不同KNN预测值反映样本集异质性并构建子模型,最后基于SVR以留一法实施组合预测。运用该组合预测方法研究磺酰脲和三唑并嘧啶磺酰胺类除草剂QSAR建模。[结果]建模结果表明,基于SVR与KNN的组合预测方法在参比模型中预测精度最高,具有结构风险最小、非线性、能有效克服过拟合、泛化推广能力优异等优点。[结论]基于SVR与KNN的组合预测具有许多优点,在QSAR研究中应用前景广泛。

全文