摘要
化工事故新闻数据包含新闻内容,标题以及新闻来源等方面信息,新闻内容的文本对上下文具有较强的依赖性.为了更准确地提取文本特征并提高化工事故分类的准确性,该文提出了一种基于Attention机制的双向LSTM (BLSTM-Attention)神经网络模型对化工新闻文本进行特征提取并实现文本分类. BLSTM-Attention神经网络模型能够结合文本上下文语义信息,通过正向和反向的角度来提取事故新闻的文本特征;考虑到事故新闻中不同词对文本的贡献不大相同,加入Attention机制对不同词和句子分配不同权重.最后,将该文提出的分类方法与Naive-Bayes、CNN、RNN、BLSTM分类方法在相同的化工事故新闻数据集上进行实验对比.实验结果表明:该文提出的神经网络模型BLSTM-Attention神在化工数据集上的效果更优于其他分类方法模型.
- 单位