摘要

命名实体识别(NER)作为自然语言处理的重要部分,在信息抽取和知识图谱等任务中得到广泛应用。然而目前中文预训练语言模型通常仅对上下文中的字符进行建模,忽略了中文字符的字形结构。提出2种结合五笔字形的上下文相关字向量表示方法,以增强字向量的语义表达能力。第一种方法分别对字符和字形抽取特征并联合建模得到字向量表示,第二种方法将五笔字形作为辅助信息拼接到字向量中,训练一个基于字符和五笔字形的混合语言模型。实验结果表明,所提两种方法可以有效提升中文NER系统的性能,且结合五笔字形的上下文相关字向量表示方法的系统性能优于基于单一字符的语言模型。