摘要

RTOS(Real-Time Operating System,实时操作系统)是SoC(System-on-a-Chip,系统芯片或片上系统)的一个重要组成部分,其功耗一般约占整个系统功耗30~40%的比例,而基于软/硬件划分的RTOS功耗优化方法(简称RTOS-Power划分)能够明显地减少SoC的功耗.因此,文中首先引入了RTOS-Power划分问题的一个新模型,这有助于理解RTOS-Power划分的本质.然后,提出了一种基于离散Hopfield神经网络的RTOS-Power划分方法,重新定义了神经网络的神经元表示、能量函数、运行方程和系数.最后,对该方法进行了仿真实验,并同遗传算法和蚂蚁算法进行了性能比较.实验结果表明:该文提出的方法能够以相对较小的代价(FPGA开销小于4K个可编程逻辑块)取得高达60%的功耗节省,同时,与纯软件实现的RTOS相比,系统性能也得到了相应的提高.