摘要
针对K-Means(KM)算法在GEC算法成簇过程中随机选取初始聚类中心,导致分簇不均匀,簇头选取不合理以及能量损耗过大的问题,提出了改进算法KM-LEACH。首先采用KM聚类算法进行分簇,并针对KM算法中随机选取初始聚类中心易造成局部最小解的问题,采用遗传算法改进,选出最优初始聚类中心进而达到全局优化;然后引入剩余能量和位置影响因子合理选取簇头;最后采用时分多址(TDMA)方式向簇首传输数据,减少网络拥塞的次数,降低数据传输的能耗。改进后的KM聚类算法可一次成簇并均匀分簇,降低成簇过程中的能量损耗;引入影响因子可合理选择簇首,均衡网络中能量损耗。仿真实验结果表明:与LEACH及引入传统KM的LEACH算法相比,所提算法能更好地节省能耗,延长网络生存期。
-
单位自动化学院; 西安邮电大学