摘要

针对在数据样本不均衡时,K近邻(K-nearest Neighbor,KNN)方法的预测结果会偏向样本数占优类的问题,本文提出了一种基于合成少数类过采样方法(SMOTE)的KNN不均衡样本分类优化方法(KSID)。该方法过程为:首先使用SMOTE方法将不均衡的训练集均衡化,并训练逻辑回归模型;然后使用逻辑回归模型对训练集进行预测,获取预测为正样本的数据,通过使用SMOTE方法均衡化该正样本,并训练KNN模型;最后把测试集放入该结合逻辑回归方法的KNN模型进行预测,得到最终的预测结果。围绕6个不均衡数据集,将KSID与逻辑回归、KNN和支持向量机(SVM)决策树等方法进行对比实验,结果表明,KSID方法在准确率、查全率、查准率、F1值这4个性能指标上均优于其他3种方法。通过引入SMOTE,KSID方法克服了KNN模型遇到样本不均衡数据集时,产生分类偏向的问题,为进一步研究KNN方法的优化和应用提供参考。

全文