摘要

[目的/意义]实体语义关系分类是信息抽取重要任务之一,将非结构化文本转化成结构化知识,是构建领域本体、知识图谱、开发问答系统、信息检索系统的基础工作。[方法/过程]本文详细梳理了实体语义关系分类的发展历程,从技术方法、应用领域两方面回顾和总结了近5年国内外的最新研究成果,并指出了研究的不足及未来的研究方向。[结果/结论]热门的深度学习方法抛弃了传统浅层机器学习方法繁琐的特征工程,自动学习文本特征,实验发现,在神经网络模型中融入词法、句法特征、引入注意力机制能有效提升关系分类性能。