摘要
针对传统转子动平衡方法需多次启车确定平衡配重、平衡效率低、平衡成本高的问题,提出了集成遗传算法(genetic algorithm,简称GA)及粒子群算法(particle swarm optimization,简称PSO)的转子多点不平衡量在线识别方法。该方法的核心是将转子不平衡量分解为数目、位置、质量和相位信息,分别获取转子系统理论不平衡响应与实际振动特征,正反问题角度相结合实现转子多点不平衡量的准确识别。首先,采用集成化的GA-PSO优化算法进行不平衡量识别;其次,通过引入正则化思想构造新的目标函数,利用遗传算法获取不平衡数目的稀疏表示,实现不平衡量数目识别;最后,采用粒子群算法进行不平衡量位置、质量和相位识别,通过缩小粒子群算法初值范围,提高不平衡位置、质量和相位识别精度。仿真和转子实验台实验数据的识别结果表明,该方法可以有效对转子不平衡量进行在线预估,并可有效指导现场无试重动平衡,从而降低后续转子系统现场动平衡的成本,提高其平衡效率。
- 单位