摘要
针对传统RBF算法收敛速度慢,易于陷入局部极值的问题,提出了一种经优化的粒子群算法PSO,对RBF神经网络粒子群的改进参数、权值线性递减参数和标准参数进行训练寻优,构建出最优PSO-RBF神经网络,并将其用于柴油机的故障诊断预报。对MAN B&W 6L23/30H柴油机三种不同工况下第一缸试验参数的训练表明:改进的PSO-RBF神经网络在柴油机故障诊断中判别率更高,故障诊断的准确性与可靠性得到提高。
-
单位沪东重机有限公司; 江苏科技大学