摘要
非线性灰色Bernoulli模型相对于普通的GM(1,1)模型,能更好的反映数据序列的非线性增长趋势.分数阶蕴含"in between"思想,分数阶累加灰色模型相对一般的累加灰色模型具有更好的预测效果和适应性.为了更好地符合新信息优先原理,实现最小信息的最大挖掘,构造了分数阶反向累加非线性灰色Bernoulli模型,即FAONGBM(1,1)模型,并给出了该模型的具体求解过程.在参数优化方面,本文通过粒子群优化(PSO)算法实现分数阶阶数和非线性指数的最优搜索.最后运用FAONGBM(1,1)模型对我国水力发电总量进行实证分析,结果证明所提出的模型具有良好的拟合精度和预测精度.
- 单位