摘要
相比于基于宏的恶意办公文档,基于漏洞利用的恶意办公文档在攻击过程中往往不需要目标交互,能在目标无感的情况下完成攻击,已经成为APT攻击的重要手段,因此检测基于漏洞利用特别是未知漏洞利用的恶意文档对于发现APT攻击具有重要作用。当前的恶意文档检测方法主要围绕PDF文档展开,分为静态检测和动态检测两类,静态检测方法容易被攻击者规避,且无法发现基于远程载荷触发的漏洞利用,动态检测方法仅考虑PDF中JavaScript脚本或文档阅读器进程的行为特征,忽视了针对系统其他进程程序的间接攻击,存在检测盲区。针对上述问题,本文分析了恶意办公文档的攻击面,提出恶意文档威胁模型,并进一步实现一种基于全局行为特征的未知恶意文档检测方法,在文档处理过程中提取全系统行为特征,仅训练良性文档样本形成行为特征库用于恶意文档检测,并引入敏感行为特征用于降低检测误报率。本文在包含DOCX、RTF、DOC三种类型共计522个良性文档上进行训练获取行为特征库,然后在2088个良性文档样本和211个恶意文档样本上进行了测试,其中10个恶意样本为手动构造用于模拟几种典型的攻击场景。实验结果表明该方法在极低误报率(0.14%)的情况下能够检测出所有的恶意样本,具备检测利用未知漏洞的恶意文档的能力,进一步实验表明该方法也能够用于检测针对WPS Office软件进行漏洞利用的恶意文档。
-
单位之江实验室; 信息工程大学