摘要
针对可重构机械臂系统存在的不确定性及不同构型下的轨迹跟踪问题,提出了径向基函数(Radial Basis Function,RBF)神经网络鲁棒自适应补偿控制算法。设计了RBF神经网络补偿控制器自适应逼近补偿系统存在的未知项;为减小控制器逼近误差及适应构型变化时的鲁棒性,在控制律中引入了鲁棒项;基于李雅普诺夫(Lyapunov)稳定性理论设计了构型自适应调节律和鲁棒项并证明了闭环控制系统的稳定性。最后,以两种典型的可重构机械臂构型进行研究,结果表明所提算法能够适应系统构型的改变,同时有效地补偿系统存在的不确定性。
- 单位