用于行为识别的通道可分离卷积神经网络

作者:易子文; 孙中华; 冯金超; 贾克斌
来源:信号处理, 2020, 36(09): 1497-1502.
DOI:10.16798/j.issn.1003-0530.2020.09.015

摘要

三维卷积神经网络比二维卷积神经网络具有更优越的时空特征提取能力,但运算量却显著增加。针对如何有效减少模型参数量、解决准确率随着计算复杂度降低而降低的问题,提出基于端到端的通道可分离卷积神经网络。通过分离通道交互作用和时空交互作用来分解三维卷积,其中分别利用3×3×3 Depthwise卷积和1×1×1常规卷积进行分离通道交互作用和时空交互作用。与传统三维卷积神经网络相比,通道可分离卷积神经网络加入模型正则化,通过降低训练精度同时提高测试精度,降低了模型的过度拟合。在UCF-101和HMDB-51数据集上的实验分别达到92.7%和64.5%的准确率。结果表明,通道可分离卷积神经网络可以提高准确率并降低计算复杂度。

全文