摘要

基于编码器—解码器架构的序列到序列学习模型是近年来主流的生成式文摘方法。但是,传统的编码器尚不能有效地对长文档进行语义编码,并且只能学习线性链结构的信息,忽视了文档具有的层次结构。而文档的层次结构(字—句—文档)有助于自动文摘系统更加准确地判断文档内不同结构单元的语义信息和重要程度。为了使编码器能够获取文档的层次结构信息,该文根据文档的层次结构对文档进行编码:首先构建字级语义表示,然后由字级语义表示构建句级语义表示。另外,该文还提出了一种语义融合单元来对输入文档不同层次的语义信息进行融合,作为最终的文档表示提供给编码器生成摘要。实验结果表明,在加入该文提出的层次文档阅读器与语义融合单元后,系统性能在ROUGE评价指标上有显著提高。