广义非线性模型的Bayes估计

作者:刘洋洋; 陈萍
来源:重庆工商大学学报(自然科学版), 2019, 36(01): 32-72.
DOI:10.16055/j.issn.1672-058X.2019.0001.006

摘要

针对广义非线性模型的参数估计问题,提出了从参数的条件后验分布中抽取观测值来估计参数值的Bayes估计法.利用贝叶斯统计分析中蒙特卡洛抽样方法中的M-H算法和Gibbs抽样算法相结合的混合算法进行分析,通过参数的条件后验分布抽取出每次迭代时的参数值,并利用参数的样本路径图和均值遍历图验证迭代时马尔科夫链的收敛性;计算马尔科夫链达到收敛后参数的后验均值得到参数的Bayes估计;通过对产品销售数据的实证分析,比较Bayes估计和极大似然估计的偏差,验证M-H算法和Gibbs抽样算法在对广义非线性模型的参数进行Bayes估计时的简洁性、有效性以及可行性.

全文