摘要

递归神经网络(RNN)和长短时记忆(LSTM)在处理顺序多媒体数据方面取得显著成就。因此,提出了一种双向长短时记忆的递归神经网络(DLSTM),该方法结合了卷积神经网络(CNN)和递归神经网络的动作识别新方法。首先,利用CNN提取视频的深度特征,构建视频特征模型,以减少冗余和复杂性。然后,利用递归神经网络学习帧特征之间的序列信息。该方法具有学习长序列的能力,能够在一定的时间间隔内通过分析特征来处理较长的视频。实验结果与现有的方法比较,该方法在动作识别方面有明显完善。

  • 单位
    安徽电子信息职业技术学院