基于脑电小波分解的呼吸暂停自动检测方法

作者:王瑶; 杨天顺; 纪思宇; 王小红; 王慧泉; 王金海; 赵晓赟
来源:中国生物医学工程学报, 2022, 41(03): 370-374.

摘要

睡眠呼吸暂停是一种常见的睡眠呼吸紊乱,目前呼吸暂停的诊断主要依靠多导睡眠监测,但因其操作复杂、价格昂贵,且对使用环境要求较高,而难以实现家用普及。为此提出一种基于脑电信号小波分解的呼吸暂停自动检测方法。首先,对脑电信号进行4层小波分解,提取第2~4层细节系数;其次,在得到的细节系数绝对值中提取能量和方差两种特征;最后,建立k-近邻,支持向量机和随机森林等机器学习模型对特征进行分类。使用来自天津市胸科医院睡眠监测实验室30名受试的3 248个正常呼吸和呼吸暂停期间的脑电信号片段进行检测,结果显示,对呼吸暂停识别准确率、灵敏度、特异度分别达到93.85%、91.46%、96.27%,表明该方法可以实现呼吸暂停事件的高精度检测,有望用于呼吸暂停自动识别系统的设计,辅助医师进行呼吸暂停自动检测。