摘要
电力系统短期负荷预测的准确性是影响电力系统运行安全的关键因素。以更精准进行短期负荷预测为目标,提出了一种基于改进鲸鱼算法(Improved Whale Optimization Algorithm,IWOA)优化的多维度深度极限学习机(Deep Extreme Learning Machine,DELM)短期负荷预测方法。首先,针对传统鲸鱼算法(Whale Optimization Algorithm,WOA)初始种群分布不够广泛的问题,引入Tent混沌映射对初始鲸鱼种群初始化;其次针对极限学习机模型(Extreme Learning Machine,ELM)数据深层隐藏的信息学习能力差的问题,采用深度极限学习机作为基础负荷预测模型,并以改进鲸鱼算法对其进行参数寻优;最后考虑到温度、湿度等因素对负荷变化影响较大,建立多维度IWOA-DELM负荷预测模型。仿真结果表明,与其他模型相比,多维度的IWOA-DELM模型预测的准确度更高。
-
单位国网山东省电力公司聊城供电公司; 天津大学; 智能电网教育部重点实验室