摘要
为使支持向量机(SVM)能更好地完成参数寻优并获得时间序列变化空间预测功能,通过改进人工蜂群社区不同蜂群的搜索方式以强化算法角色分工机制的技术优势;引入模糊信息粒化理论进一步提升支持向量机时序预测框架的学习效率、回归精度及推广能力。将方法用于上证指数时序建模并进行多角度仿真实验对比研究,无论预测精度还是泛化性能均优于现有经典方法。所提出方法具有良好的时序预测效能,对大数据背景下满意近似解及模糊性问题研究亦具有一定的启发和借鉴意义。
-
单位复杂系统管理与控制国家重点实验室; 中国科学院自动化研究所; 北京工商大学