摘要

通过整合体细胞突变、拷贝数变异和基因表达等3种组学数据,提出识别癌症驱动通路的改进最大权重子矩阵模型。该模型用通路中基因平均权重调控覆盖度和互斥度,对权重大的基因集覆盖度进行加强,同时放松其高互斥度约束。引入基于贪心算法的重组算子,提出求解该模型的单亲遗传算法PGA-MWS。采用胶质母细胞瘤和卵巢癌数据集对算法PGA-MWS和GA进行实验对比分析。实验结果显示,较GA方法,基于改进模型的PGA-MWS算法能识别出覆盖度高但互斥度不太高的基因集,且其识别的基因集中,许多均参与已知信号通路,并被证实与癌细胞密切相关,同时还能识别几种潜在的候选驱动通路,因此PGA-MWS方法可作为检测癌症驱动通路的一种有效补充。