摘要
针对密度峰值聚类(Density Peak Clustering, DPC)算法具有时空复杂度高而降低了对大规模数据集聚类的有效性,以及依靠决策图人工选取聚类中心等缺点,提出基于网格的密度峰值聚类(G-DPC)算法。采用基于网格的方式进行网格划分,用网格代表点替换网格单元整体;对各代表点聚类,通过改进的自适应方法选出核心网格代表点作为聚类中心;将剩余点归类,剔除噪声点。仿真实验验证了该算法对大规模数据集和高维数据集聚类的有效性。
- 单位
针对密度峰值聚类(Density Peak Clustering, DPC)算法具有时空复杂度高而降低了对大规模数据集聚类的有效性,以及依靠决策图人工选取聚类中心等缺点,提出基于网格的密度峰值聚类(G-DPC)算法。采用基于网格的方式进行网格划分,用网格代表点替换网格单元整体;对各代表点聚类,通过改进的自适应方法选出核心网格代表点作为聚类中心;将剩余点归类,剔除噪声点。仿真实验验证了该算法对大规模数据集和高维数据集聚类的有效性。