摘要

压缩感知理论表明稀疏信号能由少量的随机测量值恢复,从信息理论的角度来看,随机测量值能否有效表示稀疏信号仍是一个值得探讨的问题。针对压缩感知测量值的量化,将率失真理论作为工具研究压缩测量值的量化带来的平均失真度,包括均匀量化和非均匀量化两种情况,并进一步得到由量化测量值重构信号的率失真性能极限。理论分析和实验结果表明,相对于信号的自适应编码随机观测过程会引起较大的失真,但是压缩感知能利用信号的稀疏度来减小量化后的重构失真,这说明量化压缩感知适用于低稀疏度的信号。