摘要
关于时间序列模型系数估计和定阶问题,前人研究出了对于模型估计有最小二乘估计,逐步回归方法、定阶方法、遗传算法等。但是,这些算法有很多共同缺点,如当变量集较大时,估计误差较大,计算时间较长,不稳定等。为解决以上这些问题,1996年Tibshirani提出了Lasso方法,将模型参数合理地压缩。本研究将Lasso方法应用到BLUED数据集的六组数据上,通过与最小二乘估计进行比较,说明Lasso方法在选择数据时能够应用较少的时间选择出重要的变量特征,同时在分类精度上还能高于最小二乘方法。由此证明Lasso在时间序列建模问题上是一个简单有效的方法。
-
单位晋城职业技术学院