摘要
针对现有方法利用机器翻译在双语新闻中抽取差异性摘要存在的语义转换偏差问题,提出一种基于图卷积网络的双语多文档差异性摘要抽取方法。首先,对已抽取的双语多文档摘要构建句子关系图,并将GRU模型获得的句向量和句子关系图作为图卷积网络的输入,以获得图卷积相关性聚合之后的句子节点表征;然后,计算句子节点表征和GRU模型获得中英文文档向量之间的显著性得分;最后,按照显著性得分高低进行降序排序,分别抽取出中英文的差异性摘要。实验结果表明,所提出的方法能够有效抽取双语多文档差异性摘要。
- 单位
针对现有方法利用机器翻译在双语新闻中抽取差异性摘要存在的语义转换偏差问题,提出一种基于图卷积网络的双语多文档差异性摘要抽取方法。首先,对已抽取的双语多文档摘要构建句子关系图,并将GRU模型获得的句向量和句子关系图作为图卷积网络的输入,以获得图卷积相关性聚合之后的句子节点表征;然后,计算句子节点表征和GRU模型获得中英文文档向量之间的显著性得分;最后,按照显著性得分高低进行降序排序,分别抽取出中英文的差异性摘要。实验结果表明,所提出的方法能够有效抽取双语多文档差异性摘要。