摘要
针对图像语义分割网络(SegNet)在对车载视频分割过程中,因局部特征的丢失造成语义分割精度不高的问题,该文提出一种具有权重系数和图卷积网络的视频分割深度卷积网络(WG-ViSeg)。该网络对SegNet进行改进,在高级特征提取过程中加入图卷积结构,通过扩大节点的感受野减少局部特征的丢失。该网络又利用SE注意力机制改变特征图谱的权重系数进一步提高网络编码能力。对Camvid数据增强验证后结果表明,在满足车载视频对象的快速响应范围内,WG-ViSeg能够很地改善分割过程中出现的碎片化状况,较好地分割出相邻目标对象,对车载视频的整体分割精度达到89.7%,较现有的最优网络提升了5%,尤其对自动驾驶较为重要的车辆、行人等类别的语义分割精度提升了17%。
-
单位地理信息工程国家重点实验室; 武汉大学测绘遥感信息工程国家重点实验室; 北京建筑大学