摘要
针对聚焦图像融合过程中细节信息的选取和振铃效应问题,提出了一种基于剪切波(shearlet,SHT)域3种活跃量测(three activity measures,TAM)激发脉冲皮发神经元模型(spiking cortical model,SCM)的多聚焦图像融合新算法。首先,在SHT域,采用局部空间频率(space frequency,SF)和局部梯度能量(energy of gradient,EOG)及不同量测(SF,EOG和局部拉普拉斯能量和(summodified-Laplacian,SML))激励SCM模型选择纹理信息并构造初始融合图像P。然后,计算图像P与原图像之间差异的显著性特征提取焦距区域。最后,联合聚焦区域产生融合图像。为了验证提出算法的优越性,将文中结果与7种竞争的方法比较,实验结果表明新算法获得了清晰的边缘,产生了良好的视觉感知和较少的失真。
-
单位自动化学院; 西北工业大学