摘要
针对土壤中铅含量的定量检测问题,本研究基于太赫兹光谱技术对不同pH下土壤中铅含量的最佳反演预测模型进行了探索性研究。分别制备了pH为8.5, 7.0和5.5的含铅土壤样品,采集样品的太赫兹光谱数据,并对光谱数据做了多元散射矫正(MSC)、基线校正和Savitzky-Golay平滑等预处理。对预处理后的光谱数据,采用连续投影法(SPA)选取光谱数据的特征频率。基于选取的特征频率分别采用偏最小二乘法(PLS)、支持向量机(SVM)和误差反向传播神经网络(BPNN)建立土壤中铅含量的反演预测模型,采用校正集相关系数(Rc)、校正集均方根误差(RMSEC)、预测集相关系数(Rp)、预测集均方根误差(RMSEP)和剩余预测偏差(RPD)作为评价参数对模型性能进行评估,确定铅在不同pH土壤中的最佳预测模型。实验结果表明:在经过SPA选择特征频率后的建模效果普遍比全光谱的效果好。其中pH 8.5的样品最佳预测模型为SPA-PLS,Rc,Rp, RMSEC, RMSEP和RPD分别为0.997 7, 0.994 6, 14.52 mg·kg-1, 22.70 mg·kg-1和9.63; pH 7.0的样品最佳预测模型为SPA-SVM,Rc,Rp, RMSEC, RMSEP和RPD分别为0.996 2, 0.975 7, 20.25 mg·kg-1, 33.04 mg·kg-1和4.56; pH 5.5的样品最佳预测模型为SPA-BPNN,Rc,Rp, RMSEC, RMSEP和RPD分别为0.968 7, 0.974 4, 48.83 mg·kg-1, 55.03 mg·kg-1和4.44。该研究结果为不同pH土壤中铅含量的光谱反演预测提供了一种新思路,亦可为其他重金属在不同pH土壤中的含量反演预测模型提供理论方法和技术支持。
-
单位北京农业信息技术研究中心; 农业部; 机电工程学院; 福建农林大学