摘要

随着电影、电视剧、综艺节目等产业的飞速发展,近年来新兴的OTT服务(Over-the-top media services)平台给用户提供高清的流媒体播放服务,例如:爱奇艺、腾讯视频、Netflix、Hulu等。事实上,随着新用户数增多、新增流媒体数量不断庞大,用户评分逐渐矩阵成为高维矩阵,而用户评分数又不到总数的1%,传统的流媒体推荐系统因为评分稀疏性逐渐显得乏力。文章介绍了一种基于协同过滤,同时结合用户画像的方法来优化推荐系统。对于新用户,系统利用用户画像进行建模,计算用户间的相似度;对于新的流媒体视频,系统利用平台内已有的应用分类标签来初始化未知评分,然后使用协同推荐算法来反馈用户的偏好。实验结果表明该系统卓有成效,同时也提升了平台的满意度。

全文