摘要
为避免锅炉燃烧系统智能算法建模中特征变量维度过大造成的模型复杂以及过拟合问题,基于PCA提取主成分,利用PSO算法优化模型参数,建立了PCA-PSO-LSSVM锅炉效率预测模型。研究结果表明:PCA-PSO-LSSVM模型的预测精度更高,泛化能力更强,其中误差最大的锅炉效率模型测试集数据的平均相对误差仅0.002 49%,均方误差为0.004 51;未经过PCA提取主成分的PSO-LSSVM模型测试集的平均相对误差为–0.034 90%,均方误差为0.019 27;LSSVM模型测试集的平均相对误差为0.28%,均方误差为0.459 39。可见,PCA-PSO-LSSVM模型能够精准地预测锅炉热效率,适应能力更强,同时模型复杂度更低,训练速度略有提高,将为电站锅炉多方面数据预测提供一种重要手段。
- 单位