摘要
高强度聚焦超声(High intensity focused ultrasound, HIFU)已广泛应用于生物医学领域,其回波信号中的噪声处理是一个非常关键的问题。为了获得更纯净、更清晰的HIFU回波信号,提出了一种基于改进的完全自适应噪声集成经验模态分解(Improved complete ensemble empirical mode decomposition with adaptive noise, ICEEMDAN)、最小均方方差准则(Minimum mean square variance criterion, MMSVC)和小波阈值(Wavelet threshold, WT)的联合去噪方法。ICEEMDAN将信号分解为有限个本征模态函数(Intrinsic mode functions, IMF),从而避免杂散模态,减少模态中所含的噪声。MMSVC用于识别被ICEEMDAN分解得到的所有IMF,并将这些IMF分为两部分,高频IMF部分通过WT进行去噪,之后与低频IMF分量重构得到最终去噪信号。在仿真信号的实验中,与其他方法相比,本文所描述的基于ICEEMDAN-MMSVC-WT的降噪方法最大限度地保留了有用信号,大量去除了噪声成分,因而具有更好的去噪效果和应用价值。
- 单位