摘要
针对现有的磨矿粒度测量仪表检测周期长,难以满足实时检测的问题,结合典型两段式磨矿回路的特点,提出了基于高斯过程(Gaussian process,GP)的磨矿粒度软测量建模方法,将自适应自然梯度(adaptive natural gradient,ANG)法应用到对高斯过程超参数优化过程中,构建基于ANG-GP磨矿粒度软测量模型,并分别与BP神经网络和支持向量机软测量模型进行仿真试验的比较研究.结果表明:基于ANG-GP的磨矿粒度软测量方法优于其他2种方法,且具有较高预测精度,能有效地对磨矿粒度进行在线检测,表明了该方法的有效性.
- 单位