摘要
临床上原发性脑部淋巴瘤(PCNSL)和胶质母细胞瘤(GBM)的治疗方案存在很大差异,因此治疗前对二者的精确鉴别具有重要临床价值。本文提出一套基于稀疏表示体系的肿瘤自动鉴别方法,利用PCNSL和GBM T1加权磁共振成像(MRI)图像纹理细节信息的差异鉴别这两种肿瘤。首先,基于影像组学的思想,设计一种基于字典学习和稀疏表示的肿瘤纹理特征提取方法,将不同体积、不同形状的肿瘤区域转化为968维纹理特征;其次,针对提取特征存在的冗余问题,建立迭代稀疏表示方法选择少数高稳定性高分辨力的特征;最后,将选择的关键特征送入稀疏表示分类器(SRC)分类。利用十折法对数据集进行交叉验证,鉴别结果的准确率为96.36%,敏感度为96.30%,特异性为96.43%。实验结果表明,本文方法不仅能够有效地鉴别PCNSL和GBM,还避免了使用先进MRI鉴别肿瘤时存在的参数提取问题,在实际应用中具有较强的鲁棒性。
- 单位