摘要
脑肿瘤MRI图像形态各异,类别严重不平衡,采用传统机器学习的半自动分割或深度学习的全自动分割方法,分割精度都不高。针对此问题,文章将3D U-Net[1]模型改进成一个层数更深的网络模型,此结构可以提取更多图像特征,但同时会导致网络难以训练,收敛过慢。为应对这种情况设计了一个叠加式残差块,在保留更多图像特征的同时,避免了深层网络无法收敛的问题。另外以混合损失函数代替传统Dice损失函数,可以增加脑肿瘤像素区域对总损失的贡献,提高稀疏分类错误对模型的惩罚,缓解数据类别不平衡问题。实验结果表明,在全肿瘤区域、肿瘤核心区域和肿瘤增强区域,提出的深层网络和混合损失函数的方法在分割精度上分别达到了0.88、0.82、0.66,在算法准确率上有了一定提升。
- 单位