摘要
将过采样闭环结构与贝叶斯变分法相结合,推导出基于过采样闭环结构的递推贝叶斯变分法,并且通过分析过采样闭环结构估计模型的渐近方差表达式,得出过采样结构可以利用超出模型频带之外的高频信息减小辨识模型的误差。仿真结果表明:基于过采样结构的贝叶斯变分法在输出噪声仅为白噪声情况下,相较于传统辨识方法具有更高的辨识精度。当输出噪声受到尖峰噪声或脉冲噪声污染时,笔者方法能够利用外加噪声中含有的高频信息提高辨识精度。
- 单位
将过采样闭环结构与贝叶斯变分法相结合,推导出基于过采样闭环结构的递推贝叶斯变分法,并且通过分析过采样闭环结构估计模型的渐近方差表达式,得出过采样结构可以利用超出模型频带之外的高频信息减小辨识模型的误差。仿真结果表明:基于过采样结构的贝叶斯变分法在输出噪声仅为白噪声情况下,相较于传统辨识方法具有更高的辨识精度。当输出噪声受到尖峰噪声或脉冲噪声污染时,笔者方法能够利用外加噪声中含有的高频信息提高辨识精度。