摘要

针对当前显著性检测算法在检测图像目标边界时,由于轮廓信息不能够及时有效地被利用,导致检测目标效果差的问题,提出一种结合轮廓特征信息的显著性检测算法。该算法以深度残差网络的编解码结构为基础,在自下而上的路径中,首先引用一种融合方式交换轮廓特征与显著特征之间信息的单元模块,然后采用递归结构加强融合进行优化,提升轮廓信息的利用率。最后在此基础上,通过特征提取模块从分阶段的网络模型中提取出最有价值的上层特征,并且与真值图进行监督学习,以生成最优的边界预测。在DUT-OMRON、ECSSD等公开数据集上进行实验,结果表明,相对ITSD、F3Net等算法,该算法能够明显提高检测目标边界的精准度。

  • 单位
    闽南师范大学

全文