摘要
随着物联网技术的发展,手势识别在当今的人机交互中起着至关重要的作用。针对复杂背景下手势识别率低、算法鲁棒性差的问题,提出了一种基于神经网络手势识别方法对26个英文字母实现静态手势识别,该算法由手势检测和特征提取及识别3部分构成。在手势检测部分,解决手势区域提取困难的问题;在手势特征提取部分,通过肤色检测提取出手的轮廓信息的二值图像;在识别阶段,使用从LeNet-5改进的CNN来识别手势。在自己制作的数据集下对神经网络进行训练,最终获得较高的识别率;并在NUS-II和Marcel两个复杂背景的公共数据集上进行了验证实验,识别率分别达到95.31%和98.10%。结果表明,该方法可以在复杂环境下对手势进行精确识别具有较高的稳定性。
- 单位