摘要
为提高BP神经网络预测股票收盘价的准确性和高效性,文章使用Python语言,通过遗传算法(GA)对BP神经网络算法中的权值和阈值进行优化(GA-BP),并将优化后的系统用于股票预测当中。优化后的算法收敛速度更快,同时克服了BP算法容易陷入局部最优的缺陷,提高了整个系统的预测精度。最后对股票“千金药业”的仿真结果表明,该方法在股票收盘价的短期预测方面具有一定的应用价值。此外,在对股票收盘价预测过程中,添加输入参数盘口,能够有效降低GA-BP神经网络的预测误差。
-
单位宁夏大学新华学院