摘要
在大型电网和小型微电网中,风力发电预测对电力系统安全和经济运行发挥着至关重要的作用。针对传统建模中风电功率时变特性的局限,进一步探索风电时间序列波动特征的潜在信息,文章提出一种结合卷积神经网络(Convolutional Neural Network,CNN)和门控循环单元(Gated Recurrent Unit,GRU)的超短期风电预测模型。首先,该模型利用NWP气象数据为输入并将其归一化处理;然后,采用结合CNN和GRU网络对多变量时间序列进行动态时间建模,引入CNN来压缩GRU隐藏状态以减少计算模型的输出,克服训练过程中的梯度爆炸和消失问题;最后,根据风速和风力发电功率特性实现风电预测。通过实验仿真结果可知,与目前已投入运行的基于ANN的风电预测系统和近年来新兴的LSTM深度学习算法相比,该方法具有更高的预测精度,具有一定的工程价值。
- 单位