基于YOLOv5的高速公路小目标车辆逆行检测模型

作者:许璧麒; 马志强*; 宝财吉拉呼; 李雷孝; 万剑雄; 王洪彬
来源:国外电子测量技术, 2022, 41(11): 146-153.
DOI:10.19652/j.cnki.femt.2204181

摘要

针对高速公路视频数据中道路场景复杂、远端车辆目标小等现象,导致车辆逆行检测模型准确率低的问题,提出了一种基于YOLOv5和DeepSORT的CECAY5D模型框架。框架中设计了一种通道-空间注意力单元CECAC3,用于增强模型对小目标聚集区域的关注程度,提升小目标车辆检测的精度。CECAC3注意力单元是在有效通道注意力模块基础上增加了C3残差模块和空间注意力模块。在高速公路车辆逆行视频数据集下进行对比试验,实验结果表明,逆行检测模型CECAY5D在高速公路监控视频下的检测率和漏检率分别为90%和10%,相比于YOLOv5+DeepSORT模型,检测率提高了25%,漏检率降低了25%,因此该模型具有较高的检测率和较低的漏检率。