摘要

为提高机组热耗率在线计算的精度与鲁棒性,提出多种群果蝇优化算法(Multi-population fruit fly optimization algorithm,MFOA)和广义回归神经网络(Generalized regression neural network,GRNN)相结合的汽轮机热耗率预测模型。以影响机组热耗率的主要运行参数为输入参数,建立基于GRNN的机组热耗率计算模型,并进一步采用改进的多种群果蝇优化算法优化GRNN模型中的光滑因子。将所建MFOA-GRNN热耗率预测模型应用到某1 000 MW机组中,结果表明该模型具有很好的计算精度,在测量数据发生方差增大、定值偏移等异常情况时该模型也能给出可靠的计算结果,具有较强的泛化能力和鲁棒性,满足实际工程需要。