摘要
针对当前基于卷积神经网络的双目立体匹配算法需要较高的特征提取能力且网络的参数量过多的问题,提出一种基于注意力机制的立体匹配网络,在特征提取阶段采用改进后的通道注意力机制根据通道内所含的信息进行特征加权,同时采用改进的空间金字塔结构实现多尺度特征提取,以提高网络的特征提取能力;设计3D注意力模块和3D可分离卷积进行视差计算,相比于标准卷积不仅可以降低网络的计算参数同时增加了通道维数可以保证匹配精度.最后,在Scene Flow数据集、KITTI 2012数据集和KITTI 2015数据集上进行评估,实验表明,本文的网络模型在保证匹配精度的同时有效减少网络的计算参数.
- 单位