近年来,神经网络的模型不断得到完善,神经网络在运动想象分类任务中的应用越来越广泛,分类准确率不断提高。本文主要对传统的机器学习算法进行介绍与总结,在此基础上对深度学习网络模型的原理及应用进行了概括,主要分析卷积神经网络、生成对抗网络和胶囊网络这几种网络模型的优缺点及应用,并对多种网络模型组合分类或将单一网络模型中的多种特征进行组合分类的发展趋势进行展望,提出目前运动想象分类任务面临的问题及发展趋势。