摘要
灵武长枣作为宁夏优势特色枣果,具有重要的经济社会价值和科学研究意义。利用可见近红外(Vis/NIR)高光谱成像系统采集60颗完整长枣光谱图像,然后利用损伤装置对60颗完整长枣进行损伤实验,最终得到60颗损伤(内部瘀伤)长枣,高光谱成像系统采集损伤后五个时间段(损伤后2, 4, 8, 12和24 h)长枣的光谱图像。对采集的长枣光谱图像用ENVI软件提取感兴趣(ROI)区域,并计算完整长枣和每个时间段长枣的平均光谱值。原始光谱利用Savitzky-Golay平滑的一阶导数(SG-1)和二阶导数(SG-2)、标准正态变换(SNV)和去趋势(Detrending)、以及SNV-SG-1、 SNV-SG-2、 Detrending-SG-1、 Detrending-SG-2算法进行预处理,原始光谱和预处理光谱建立偏最小二乘判别分析(PLS-DA)分类模型。选择最优的预处理光谱数据,利用连续投影算法(SPA)、间隔随机蛙跳(IRF)、无信息消除变量(UVE)、变量组合集群分析法(VCPA)、区间变量迭代空间收缩法(IVISSA)和IRF-SPA、 UVE-SPA、 IVISSA-SPA等算法进行特征变量选择,对选择的特征变量建立PLS-DA、线性判别分析(LDA)和支持向量机(SVM)分类判别模型。结果表明,在原始光谱建立的PLS-DA模型中,模型校正集和预测集准确率分别为82.96%和90%。光谱经过预处理后得到SNV-SG-2-PLS-DA为最优分类判别模型,模型校正集和预测集准确率分别为91.11%和96.67%。在特征变量建立的分类模型中,SNV-SG-2-UVE-PLS-DA模型校正集和预测集准确率分别为86.3%和94.44%; SNV-SG-2-SPA-LDA模型校正集和预测集准确率分别为86.3%和83.33%; SNV-SG-2-UVE-SVM模型校正集和预测集准确率分别为77.78%和71.11%。对于分类模型来说线性分类模型(PLS-DA、 LDA)分类结果优于非线性分类模型(SVM)分类结果,在线性分类模型结果中PLS-DA优于LDA分类结果,PLS-DA可以更好的提供分类效果。研究表明,利用高光谱结合偏最小二乘判别分析分类模型,可以有效的实现灵武长枣损伤后随时间变化的快速检测,为灵武长枣在线检测提供理论依据。
- 单位