摘要
气膜冷却是增强涡轮叶片的高温耐受力,间接提高涡轮进口温度的有效手段之一。目前气膜冷却孔布局的主流设计方法是先通过计算流体力学(CFD)筛选和优化初始方案,再进行模型实验。这种方法设计周期长,时间成本高。传统上用于快速评估冷却效率的经验公式法存在函数形式复杂,拟合精度有限,参数适用范围较窄等问题。因此基于深度学习原理,设计了一种基于多层感知器模型(MLP)的深度神经网络,建立了绝热气膜冷却效率的预测模型。使用CFD数据训练网络,结果表明:深度学习模型在训练集和验证集上具有大于0.95的拟合度,在测试集上具有大于0.99的拟合度,可以较好地识别数据集中的抽象特征,具有较高的精度和较好的泛化能力。此外,在满足精度要求的前提下,一个完成训练的深度学习模型能够有效减少预测耗时,提高预测效率,在快速评估冷却布局性能方面具有较好的应用前景。
- 单位