摘要
由于合成孔径雷达(SAR)图像的特点,如岸上船舶目标密集排列,容易受到陆地影响,造成SAR图像近岸舰船目标检测检测率低和漏检率高的问题,提出了一种基于YOLOv5的改进BiFPN特征融合模块的目标检测算法。针对海岸边舰船目标容易受到复杂建筑影响造成漏检的问题,在YOLOv5的Backbone中加入CBAM注意力机制,通过注意力机制学习舰船目标的特征,提高主干网络的特征提取能力;使用SIoU作为新的损失函数,重新定义预测框和真实框的关系,实现新的高精度定位;增加为四尺度特征检测,重新定义一个大尺度特征检测层,与此对应将特征融合模块中原有PANet替换成改进的多尺度加权双向特征金字塔(BiFPN)网络结构,实现与检测层相对应的高效特征融合模块。实验结果表明,该算法在公开的HRSID舰船数据集的R和mAP分别为88.2%和94.3%,比原来的YOLOv5算法分别提升了2和2.7百分点,达到了在复杂环境下对小目标和密集目标检测的要求。
- 单位